Menu
|
111-222-292 (Ext: 245)
Home
|
About US
|
Creditors
|
Mentorship
|
Faq
Home
About US
Creditors
Mentorship
Faq
Lecture
SEARCH COURSES / LECTURES
Search Lectures
Search Courses
All Disciplines
Basic and Health Sciences
Applied Sciences
Social Sciences
All Levels
Undergraduate
School
College
Graduate
All Institutes
Khan Academy Urdu
Virtual Education Project Pakistan (VEPP)
Harvard
UCI Open
MIT
Oxford
Yale University
Khan Academy
Udacity
Stanford
Virtual University
Home
>>
Applied Sciences
>>
Computer Science
>>
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
(15 Lectures Available)
S#
Lecture
Course
Institute
Instructor
Discipline
1
1. Introduction, Optimization Problems (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
2
10. Understanding Experimental Data (cont.) (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
3
11. Introduction to Machine Learning (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
4
12. Clustering (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
5
13. Classification (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
6
14. Classification and Statistical Sins (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
7
15. Statistical Sins and Wrap Up (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
8
2. Optimization Problems (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
9
3. Graph-theoretic Models (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
10
4. Stochastic Thinking (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
11
5. Random Walks (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
12
6. Monte Carlo Simulation (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
13
7. Confidence Intervals (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
14
8. Sampling and Standard Error (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
15
9. Understanding Experimental Data (M-I-T)
Introduction to Computational Thinking and Data Science, Fall 2016 (M-I-T)
MIT
John Guttag
Applied Sciences
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology