Menu
|
111-222-292 (Ext: 245)
Home
|
About US
|
Creditors
|
Mentorship
|
Faq
Home
About US
Creditors
Mentorship
Faq
Lecture
SEARCH COURSES / LECTURES
Search Lectures
Search Courses
All Disciplines
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology
All Levels
Undergraduate
School
College
Graduate
All Institutes
Harvard
Khan Academy
Khan Academy Urdu
MIT
Oxford
Stanford
UCI Open
Udacity
Virtual Education Project Pakistan (VEPP)
Virtual University
Yale University
Home
>>
Basic and Health Sciences
>>
Mathematics
>>
Differential Equations (Spring 2010) (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
(32 Lectures Available)
S#
Lecture
Course
Institute
Instructor
Discipline
1
Lecture 10: Continuation: Complex Characteristic Roots (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
2
Lecture 11: Theory of General Second-order Linear Homogeneous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
3
Lecture 12: Continuation: General Theory for Inhomogeneous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
4
Lecture 13: Finding Particular Solutions to Inhomogeneous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
5
Lecture 14: Interpretation of the Exceptional Case: Resonance (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
6
Lecture 15: Introduction to Fourier Series (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
7
Lecture 16: Continuation: More General Periods (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
8
Lecture 17: Finding Particular Solutions via Fourier Series (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
9
Lecture 19: Introduction to the Laplace Transform (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
10
Lecture 1: The Geometrical View of y'= f(x,y) (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
11
Lecture 20: Derivative Formulas (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
12
Lecture 21: Convolution Formula (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
13
Lecture 22: Using Laplace Transform to Solve ODEs with Discontinuous Inputs (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
14
Lecture 23: Use with Impulse Inputs (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
15
Lecture 24: Introduction to First-order Systems of ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
16
Lecture 25: Homogeneous Linear Systems with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
17
Lecture 26: Continuation: Repeated Real Eigenvalues (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
18
Lecture 27: Sketching Solutions of 2x2 Homogeneous Linear System with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
19
Lecture 28: Matrix Methods for Inhomogeneous Systems (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
20
Lecture 29: Matrix Exponentials (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
21
Lecture 2: Euler's Numerical Method for y'=f(x,y) (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
22
Lecture 30: Decoupling Linear Systems with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
23
Lecture 31: Non-linear Autonomous Systems (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
24
Lecture 32: Limit Cycles (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
25
Lecture 33: Relation Between Non-linear Systems and First-order ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T)
MIT
Prof. Haynes Miller, and Prof. Arthur Mattuck
Basic and Health Sciences
‹
1
2
›
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology