Lecture

Right Arrow

SEARCH COURSES / LECTURES

Left Arrow

Differential Equations (Spring 2010) (M-I-T)

(32 Lectures Available)

S# Lecture Course Institute Instructor Discipline
1
  • Lecture 10: Continuation: Complex Characteristic Roots (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
2
  • Lecture 11: Theory of General Second-order Linear Homogeneous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
3
  • Lecture 12: Continuation: General Theory for Inhomogeneous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
4
  • Lecture 13: Finding Particular Solutions to Inhomogeneous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
5
  • Lecture 14: Interpretation of the Exceptional Case: Resonance (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
6
  • Lecture 15: Introduction to Fourier Series (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
7
  • Lecture 16: Continuation: More General Periods (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
8
  • Lecture 17: Finding Particular Solutions via Fourier Series (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
9
  • Lecture 19: Introduction to the Laplace Transform (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
10
  • Lecture 1: The Geometrical View of y'= f(x,y) (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
11
  • Lecture 20: Derivative Formulas (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
12
  • Lecture 21: Convolution Formula (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
13
  • Lecture 22: Using Laplace Transform to Solve ODEs with Discontinuous Inputs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
14
  • Lecture 23: Use with Impulse Inputs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
15
  • Lecture 24: Introduction to First-order Systems of ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
16
  • Lecture 25: Homogeneous Linear Systems with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
17
  • Lecture 26: Continuation: Repeated Real Eigenvalues (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
18
  • Lecture 27: Sketching Solutions of 2x2 Homogeneous Linear System with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
19
  • Lecture 28: Matrix Methods for Inhomogeneous Systems (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
20
  • Lecture 29: Matrix Exponentials (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
21
  • Lecture 2: Euler's Numerical Method for y'=f(x,y) (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
22
  • Lecture 30: Decoupling Linear Systems with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
23
  • Lecture 31: Non-linear Autonomous Systems (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
24
  • Lecture 32: Limit Cycles (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
25
  • Lecture 33: Relation Between Non-linear Systems and First-order ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences