Menu
|
111-222-292 (Ext: 245)
Home
|
About US
|
Creditors
|
Mentorship
|
Faq
Home
About US
Creditors
Mentorship
Faq
Lecture
SEARCH COURSES / LECTURES
Search Lectures
Search Courses
All Disciplines
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology
All Levels
Undergraduate
School
College
Graduate
All Institutes
Harvard
Khan Academy
Khan Academy Urdu
MIT
Oxford
Stanford
UCI Open
Udacity
Virtual Education Project Pakistan (VEPP)
Virtual University
Yale University
Home
>>
Engineering
>>
Electrical Engineering and Computer Science (M-I-T)
>>
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
(25 Lectures Available)
S#
Lecture
Course
Institute
Instructor
Discipline
1
Lecture 1 Probability Models and Axioms
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
2
Lecture 10 Continuous Bayes’ Rule; Derived Distributions
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
3
Lecture 11 Derived Distributions; Convolution; Covariance and Correlation
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
4
Lecture 12 Iterated Expectations; Sum of a Random Number of Random Variables
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
5
Lecture 13 Bernoulli Process
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
6
Lecture 14 Poisson Process I
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
7
Lecture 15 Poisson Process II
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
8
Lecture 16 Markov Chains I
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
9
Lecture 17 Markov Chains II
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
10
Lecture 18 Markov Chains III
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
11
Lecture 19 Weak Law of Large Numbers
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
12
Lecture 2 Conditioning and Bayes’ Rule
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
13
Lecture 20 Central Limit Theorem
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
14
Lecture 21 Bayesian Statistical Inference I
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
15
Lecture 22 Bayesian Statistical Inference II
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
16
Lecture 23 Classical Statistical Inference I
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
17
Lecture 24 Classical Inference II
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
18
Lecture 25 Classical Inference III; Course Overview
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
19
Lecture 3 Independence
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
20
Lecture 4 Counting
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
21
Lecture 5 Discrete Random Variables; Probability Mass Functions; Expectations
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
22
Lecture 6 Discrete Random Variable Examples; Joint PMFs
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
23
Lecture 7 Multiple Discrete Random Variables Expectations, Conditioning, Independence
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
24
Lecture 8 Continuous Random Variables
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
25
Lecture 9 Multiple Continuous Random Variables
Probabilistic System Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology