Menu
|
111-222-292 (Ext: 245)
Home
|
About US
|
Creditors
|
Mentorship
|
Faq
Home
About US
Creditors
Mentorship
Faq
Lecture
SEARCH COURSES / LECTURES
Search Lectures
Search Courses
All Disciplines
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology
All Levels
Undergraduate
School
College
Graduate
All Institutes
Harvard
Khan Academy
Khan Academy Urdu
MIT
Oxford
Stanford
UCI Open
Udacity
Virtual Education Project Pakistan (VEPP)
Virtual University
Yale University
Home
>>
Applied Sciences
>>
Engineering
>>
Electrical Engineering and Computer Science (M-I-T)
>>
Introduction to Probability (Spring 2018) (M-I-T)
>>
Part I: The Fundamentals (M-I-T)
>>
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
(8 Lectures Available)
S#
Lecture
Course
Institute
Instructor
Discipline
1
L02.1 Lecture Overview (M-I-T)
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
2
L02.2 Conditional Probabilities (M-I-T)
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
3
L02.3 A Die Roll Example (M-I-T)
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
4
L02.4 Conditional Probabilities Obey the Same Axioms (M-I-T)
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
5
L02.5 A Radar Example and Three Basic Tools (M-I-T)
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
6
L02.6 The Multiplication Rule (M-I-T)
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
7
L02.7 Total Probability Theorem (M-I-T)
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
8
L02.8 Bayes' Rule (M-I-T)
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology