Menu
|
111-222-292 (Ext: 245)
Home
|
About US
|
Creditors
|
Mentorship
|
Faq
Home
About US
Creditors
Mentorship
Faq
Lecture
SEARCH COURSES / LECTURES
Search Lectures
Search Courses
All Disciplines
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology
All Levels
Undergraduate
School
College
Graduate
All Institutes
Harvard
Khan Academy
Khan Academy Urdu
MIT
Oxford
Stanford
UCI Open
Udacity
Virtual Education Project Pakistan (VEPP)
Virtual University
Yale University
Home
>>
Engineering
>>
Electrical Engineering and Computer Science (M-I-T)
>>
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
(25 Lectures Available)
S#
Lecture
Course
Institute
Instructor
Discipline
1
Lecture 10: Continuous Bayes' Rule; Derived Distributions (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
2
Lecture 11: Derived Distributions; Convolution; Covariance and Correlation (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
3
Lecture 12: Iterated Expectations; Sum of a Random Number of Random Variables (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
4
Lecture 13: Bernoulli Process (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
5
Lecture 14: Poisson Process I (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
6
Lecture 15: Poisson Process II (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
7
Lecture 16: Markov Chains I (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
8
Lecture 17: Markov Chains II (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
9
Lecture 18: Markov Chains III (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
10
Lecture 19: Weak Law of Large Numbers (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
11
Lecture 1: Probability Models and Axioms (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
12
Lecture 20: Central Limit Theorem (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
13
Lecture 21: Bayesian Statistical Inference I (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
14
Lecture 22: Bayesian Statistical Inference II (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
15
Lecture 23: Classical Statistical Inference I (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
16
Lecture 24: Classical Inference II (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
17
Lecture 25: Classical Inference III; Course Overview (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
18
Lecture 2: Conditioning and Bayes' Rule (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
19
Lecture 3: Independence (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
20
Lecture 4: Counting (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
21
Lecture 5: Discrete Random Variables; Probability Mass Functions; Expectations (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
22
Lecture 6: Discrete Random Variable Examples; Joint PMFs (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
23
Lecture 7: Multiple Discrete Random Variables: Expectations, Conditioning, Independence (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
24
Lecture 8: Continuous Random Variables (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
25
Lecture 9: Multiple Continuous Random Variables (M-I-T)
Probabilistic Systems Analysis and Applied Probability (Fall 2010) (M-I-T)
MIT
Prof. John Tsitsiklis
Applied Sciences
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology