Menu
|
111-222-292 (Ext: 245)
Home
|
About US
|
Creditors
|
Mentorship
|
Faq
Home
About US
Creditors
Mentorship
Faq
Lecture
SEARCH COURSES / LECTURES
Search Lectures
Search Courses
All Disciplines
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology
All Levels
Undergraduate
School
College
Graduate
All Institutes
Harvard
Khan Academy
Khan Academy Urdu
MIT
Oxford
Stanford
UCI Open
Udacity
Virtual Education Project Pakistan (VEPP)
Virtual University
Yale University
Home
>>
Engineering
>>
Electrical Engineering and Computer Science (M-I-T)
>>
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
(76 Lectures Available)
S#
Lecture
Course
Institute
Instructor
Discipline
1
1. Probability Models and Axioms (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
2
10. Continuous Bayes' Rule; Derived Distributions (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
3
11. Derived Distributions (ctd.); Covariance (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
4
12. Iterated Expectations (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
5
13. Bernoulli Process (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
6
14. Poisson Process I (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
7
15. Poisson Process II (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
8
16. Markov Chains I (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
9
17. Markov Chains II (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
10
18. Markov Chains III (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
11
19. Weak Law of Large Numbers (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
12
2. Conditioning and Bayes' Rule (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
13
20. Central Limit Theorem (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
14
21. Bayesian Statistical Inference I (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
15
22. Bayesian Statistical Inference II (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
16
23. Classical Statistical Inference I (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
17
24. Classical Inference II (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
18
25. Classical Inference III (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
19
3. Independence (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
20
4. Counting (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
21
5. Discrete Random Variables I (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
22
6. Discrete Random Variables II (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
23
7. Discrete Random Variables III (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
24
8. Continuous Random Variables (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
25
9. Multiple Continuous Random Variables (M-I-T)
Probabilistic System Analysis And Applied Probability (Fall 2013) (M-I-T)
MIT
Prof. Dr. John Tsitsiklis
Applied Sciences
‹
1
2
3
4
›
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology