Lecture

Right Arrow

SEARCH COURSES / LECTURES

Left Arrow

First Order Differential Equations (M-I-T)

(10 Lectures Available)

S# Lecture Course Institute Instructor Discipline
1
  • Basic DE's and Separable Equations (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences
2
  • Complex Arithmetic, Euler's Formula (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences
3
  • Euler's Method (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences
4
  • Exploration of the Amplitude and Phase: First Order Applet (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences
5
  • First Order Autonomous Equations (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences
6
  • Geometric View of DE's: Direction Fields, Integral Curves (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences
7
  • Linear First Order ODE's: Definition (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences
8
  • Separable Equations (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences
9
  • Solutions to Constant Coefficient Linear First Order ODE's (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences
10
  • Three Proofs of the Basic Trigonometric Identity (M-I-T)
First Order Differential Equations (M-I-T) MIT Prof. Arthur Mattuck, Prof. Haynes Miller, Jeremy Orloff, and Dr. John Lewis Basic and Health Sciences