Menu
|
111-222-292 (Ext: 245)
Home
|
About US
|
Creditors
|
Mentorship
|
Faq
Home
About US
Creditors
Mentorship
Faq
Lecture
SEARCH COURSES / LECTURES
Search Lectures
Search Courses
All Disciplines
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology
All Levels
Undergraduate
School
College
Graduate
All Institutes
Harvard
Khan Academy
Khan Academy Urdu
MIT
Oxford
Stanford
UCI Open
Udacity
Virtual Education Project Pakistan (VEPP)
Virtual University
Yale University
Home
>>
Medicine
>>
Health Science and Technology (M-I-T)
>>
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
(73 Lectures Available)
S#
Lecture
Course
Institute
Instructor
Discipline
1
A Data Science Revolution In Healthcare (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
2
A Data-Driven Future For Medicine (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
3
Adequate Representation and Justification of Data (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
4
An example in R with MIMIC-III (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
5
Best-Practices to Ensure Reproducibility (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
6
Case Study: Reproducing Studies Using MIMIC-III (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
7
Closing Remarks (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
8
Closing Summary and Next Steps for Independent Learning (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
9
Collaborations and Data Source Bias (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
10
Conclusion (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
11
Considerations Of Fairness (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
12
Control Group (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
13
Deep Learning: A Machine Learning Technique (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
14
Developing A Shared Language (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
15
EDA Tools (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
16
Evaluating Analyses (Example) (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
17
Exploring MIMIC-III (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
18
Final Thoughts (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
19
FINER Mnemonic (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
20
Frequency of Data Acquisition (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
21
Get To Know Your Data (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
22
Graphical EDA: Multivariate Case Study (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
23
Graphical EDA: Scatterplot Examples (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
24
Handling Missing Data: Weighting-Case Analysis (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
25
Integrating EDA into Confirmatory Analysis (M-I-T)
Collaborative Data Science for Healthcare (Fall 2020) (M-I-T)
MIT
Dr. Leo Celi, Dr. Louis Agha-Mir-Salim, and Marie-Laure Charpignon
Basic and Health Sciences
‹
1
2
3
›
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology