Menu
|
111-222-292 (Ext: 245)
Home
|
About US
|
Creditors
|
Mentorship
|
Faq
Home
About US
Creditors
Mentorship
Faq
Lecture
SEARCH COURSES / LECTURES
Search Lectures
Search Courses
All Disciplines
Basic and Health Sciences
Applied Sciences
Social Sciences
All Levels
Undergraduate
School
College
Graduate
All Institutes
Khan Academy Urdu
Virtual Education Project Pakistan (VEPP)
Harvard
UCI Open
MIT
Oxford
Yale University
Khan Academy
Udacity
Stanford
Virtual University
Home
>>
Applied Sciences
>>
Engineering
>>
Electrical Engineering and Computer Science (M-I-T)
>>
Introduction to Probability (Spring 2018) (M-I-T)
>>
Part III: Random Processes (M-I-T)
>>
Lecture 23: The Poisson Process Part II (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
(11 Lectures Available)
S#
Lecture
Course
Institute
Instructor
Discipline
1
L23.1 Lecture Overview (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
2
L23.2 The Sum of Independent Poisson Random Variables (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
3
L23.3 Merging Independent Poisson Processes (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
4
L23.4 Where is an Arrival of the Merged Process Coming From? (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
5
L23.5 The Time Until the First (or Last) Lightbulb Burns Out (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
6
L23.6 Splitting a Poisson Process (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
7
L23.7 Random Incidence in the Poisson Process (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
8
L23.8 Random Incidence in a Non–Poisson Process (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
9
L23.9 Different Sampling Methods Can Give Different Results (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
10
S23.1 Poisson Versus Normal Approximations to the Binomial (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
11
S23.2 Poisson Arrivals During an Exponential Interval (M-I-T)
Lecture 23: The Poisson Process Part II (M-I-T)
MIT
Prof. John Tsitsiklis, Prof. Patrick Jaillet
Applied Sciences
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology