1 |
Matrix solution of harmonic oscillator problem, derivation of heisenberg equation of motion, matrix elements of any function of X and P |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

2 |
Building an effective hamiltonian |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

3 |
Anharmonic oscillator, vibration-rotation interaction, energy levels of a vibrating rotor |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

4 |
Atoms 1e- and alkali |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

5 |
Alkali and many e- atomic spectra |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

6 |
Many e- atoms |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

7 |
How to assign an atomic spectrum |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

8 |
The Born-Oppenheimer approximation |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

9 |
Excerpts from the spectra and dynamics of diatomic molecules |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

10 |
The Born-Oppenheimer approach to transitions |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

11 |
The Born-Oppenheimer approach to transitions II |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

12 |
Pictures of spectra and notation |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

13 |
Rotational assignment of diatomic electronic spectra I |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

14 |
Laser schemes for rotational assignment first lines for Ω’, Ω” assignments |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

15 |
Definition of angular momenta and | A α MA > |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

16 |
Rotation and angular momenta |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

17 |
2∏ and 2∑ matrices |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

18 |
Parity and e/f basis for 2∏, 2∑± |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

19 |
Hund’s cases 2∏, 2∑± examples |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

20 |
Energy level structure of 2∏ and 2∑ states, matrix elements for 2∏ and 2∑ including ∏ ~ ∑ perturbation, parity |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

21 |
Perturbations |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

22 |
A model for the perturbations and fine structure of the ∏ states of CO, factorization of perturbation parameters, the electronic perturbation parameters |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

23 |
Second-order effects |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

24 |
Second-order effects centrifugal distortion and Λ-doubling |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |

25 |
Transformations between basis sets 3-j, 6-j, and Wigner-Eckart theorem |
Small-Molecule Spectroscopy and Dynamics (MIT) |
MIT |
Basic Sciences |