1 |
Introduction to ML - perspective and history (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
2 |
Linear classifiers (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
3 |
The random linear classifier algorithm (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
4 |
Machine learning as optimization - framework (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
5 |
Logistic regression - setting and sigmoid function (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
6 |
Linear logistic classifier - hypothesis class (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
7 |
Linear logistic classifier - negative log likelihood loss function (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
8 |
Machine learning as optimization - gradient descent in one dimension (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
9 |
Machine learning as optimization - gradient descent in multiple dimensions (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
10 |
One-dimensional linear regression - demo (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
11 |
Two-dimensional linear regression - demo (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
12 |
Linear logistic classifier - a few comments about regularization (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
13 |
Gradient descent optimization - algorithm in one dimension (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
14 |
Gradient descent optimization - local optima (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
15 |
Gradient descent optimization - algorithm in multiple dimensions (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
16 |
Gradient descent optimization - parameters and demo (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
17 |
Regression and the ordinary least squares problem (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
18 |
Regression - ordinary least squares solution using optimization (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
19 |
Regression - OLS analytical solution setup (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
20 |
Regression - OLS analytical solution using gradients (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
21 |
Regression - beauty of the closed form OLS solution (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
22 |
Regression - regularization by ridge regression (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
23 |
Regression - analytical minimization of the ridge regression objective (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
24 |
Regression - ridge regression using gradient descent (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|
25 |
Regression - stochastic gradient descent (M-I-T)
|
Introduction to Machine Learning (Fall 2020) (M-I-T)
|
MIT
|
Prof. Leslie Kaelbling
|
Applied Sciences
|